
Cptr350 Chapter 4 — The Processor – Data Hazards 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 4

The Processor
Data Hazards

Pipeline Complexity

• Record of Intel Microprocessors in terms of pipeline
complexity, number of cores, and power. The
Pentium 4 pipeline stages do not include the commit
stages. If they were included, the Pentium 4 pipelines
would be even deeper.

Cptr350 Chapter 4 — The Processor – Data Hazards 2

A8 Pipeline

• The first three stages fetch instructions into a 12-entry instruction
fetch buffer. The Address Generation Unit (AGU) uses a Branch
Target Buffer (BTB), Global History Buffer (GHB), and a Return Stack
(RS) to predict branches to try to keep the fetch queue full. Instruction
decode is five stages and instruction execution is six stages.

Core I7 Pipeline

• The Core i7 pipeline with
memory components.
The total pipeline depth
is 14 stages, with branch
mis-predictions costing
17 clock cycles. This
design can buffer 48
loads and 32 stores. The
six independent units
can begin execution of a
ready RISC operation
each clock cycle.

Cptr350 Chapter 4 — The Processor – Data Hazards 3

Review - Pipeline Registers

n Need registers between stages to hold information
produced in previous cycle.

Review - Five Instruction Sequence

Once the
pipeline is

full, one
instruction is

completed
every cycle,

so CPI = 1

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Time to fill the pipeline

Cptr350 Chapter 4 — The Processor – Data Hazards 4

Review: Can Pipelining Get Us Into Trouble?

n Yes: Pipeline Hazards
n Structural hazards: different instructions in different

stages (or the same stage) conflicting for the same
resource.

n Data hazards: an instruction cannot continue because
it needs a value that has not yet been generated by an
earlier instruction.

n Control hazards: fetching the next instruction cannot
continue because it does not know the outcome of a
branch – special case of a data hazard – separate
category because they are treated in different ways.

n Can usually resolve hazards by waiting.

Pipelined Control - Simplified

Cptr350 Chapter 4 — The Processor – Data Hazards 5

Pipelined Control
n Control signals are derived from the instruction opcode

as in single-cycle implementation.

Pipelined Control

Cptr350 Chapter 4 — The Processor – Data Hazards 6

Structural Hazards

n A structural hazard is a conflict for use of a resource.
n A combination instruction/data memory would create a

structural hazard in a pipelined architecture
n Load/store requires data access.
n Instruction fetch would have to stall for that cycle.

n Fix with separate instruction and data memories (I$ and
D$).

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A Single Memory Would Be a Structural Hazard

Reading data from
memory

Reading instruction
from memory

Cptr350 Chapter 4 — The Processor – Data Hazards 7

Optimizing Register File Access

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Eliminate register
file access hazard
by doing reads in
the second half of

the cycle and writes
in the first half.

add $1,

add $2,$1,

Data Hazards

n An instruction produces a value in a given pipeline
stage.

n A subsequent instruction consumes that value in a
pipeline stage.

n The consumer may have to be delayed so that the time
of consumption is later than the time of production.

Cptr350 Chapter 4 — The Processor – Data Hazards 8

n Data hazards occur when an instruction depends on data
computed by a previous instruction:
n add $s0, $t0, $t1
sub $t2, $s0, $t3

Data Hazards

stall

stall

One Way to “Fix” a Data Hazard

I
n
s
t
r.

O
r
d
e
r

add $1,

A
LUIM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Can fix data
hazards by

waiting – stall –
but impacts

CPI.

Cptr350 Chapter 4 — The Processor – Data Hazards 9

A Better Way - Forwarding
n Use result when it is computed

n Don’t wait for it to be stored in a register.
n Requires extra connections in the datapath.

Forwarding Example

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

Cptr350 Chapter 4 — The Processor – Data Hazards 10

Load-Use Data Hazard
n Can’t always avoid stalls by forwarding

n The value may not be available when needed.
n Can’t forward backward in time.

Example of Load-use Data Hazard

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

n Dependencies backward in time cause hazards.

Cptr350 Chapter 4 — The Processor – Data Hazards 11

Code Scheduling to Avoid Stalls
n Reorder code to avoid the use of the load result in the

next instruction.
n C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

Data Hazards in ALU Instructions
n Consider this sequence:

sub $2, $1,$3

and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

n Can we resolve hazards with forwarding?
n How do we detect when to forward?

Cptr350 Chapter 4 — The Processor – Data Hazards 12

Dependencies & Forwarding

Data Forwarding
n Take the result from the earliest point that it exists in any

of the pipeline state registers and forward it to the

functional units that need it in that particular cycle.

n For the ALU functional unit: the inputs can come from

any pipeline register rather than just from ID/EX by

n Adding multiplexers to the inputs of the ALU.

n Connecting the Rd write-data in EX/MEM or MEM/WB to

either (or both) of the EX’s stage Rs and Rt mux inputs.

n Adding the proper control hardware to control new muxes.

n Other functional units may need similar forwarding logic

(e.g., the DM).

n With forwarding, you can achieve a CPI of 1 even in the

presence of data dependencies.

Cptr350 Chapter 4 — The Processor – Data Hazards 13

Detecting the Need to Forward

n Pass register numbers along pipeline
n e.g., ID/EX.RegisterRs = register number for Rs sitting

in ID/EX pipeline register
n ALU operand register numbers in EX stage are given

by
n ID/EX.RegisterRs, ID/EX.RegisterRt

n Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Detecting the Need to Forward
n But only if forwarding instruction will write to a register

n EX/MEM.RegWrite, MEM/WB.RegWrite
n And only if Rd for that instruction is not $zero

n EX/MEM.RegisterRd ≠ 0,
MEM/WB.RegisterRd ≠ 0

Cptr350 Chapter 4 — The Processor – Data Hazards 14

Forwarding Paths

Forwarding Conditions
n EX hazard

n if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10
n if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10

n MEM hazard
n if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

n if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Cptr350 Chapter 4 — The Processor – Data Hazards 15

Double Data Hazard
n Consider the sequence:

add $1,$1,$2

add $1,$1,$3
add $1,$1,$4

n Both hazard situations occur
n Want to use the most recent.

n Revise MEM hazard condition
n Only fwd if EX hazard condition isn’t true.

Revised Forwarding Conditions
n MEM hazard

n if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01
n if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Cptr350 Chapter 4 — The Processor – Data Hazards 16

Datapath with Forwarding

Load-Use Data Hazard

Need to stall
for one cycle

Cptr350 Chapter 4 — The Processor – Data Hazards 17

Load-Use Hazard Detection

n Check when instruction is decoded in ID stage.
n ALU operand register numbers in ID stage are given by

n IF/ID.RegisterRs, IF/ID.RegisterRt
n Load-use hazard when

n ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

n If detected, stall and insert bubble.

How to Stall the Pipeline
n Force control values in ID/EX register to 0

n EX, MEM and WB do nop (no-operation).

n Prevent update of PC and IF/ID register
n Simply forces the same instruction to be decoded again.

n Following instruction is fetched again.
n 1-cycle stall allows MEM to read data for lw

n Can subsequently forward to EX stage if needed.

Cptr350 Chapter 4 — The Processor – Data Hazards 18

Stall/Bubble in the Pipeline

Stall inserted
here

Datapath with Hazard Detection

Cptr350 Chapter 4 — The Processor – Data Hazards 19

Summary
n All modern day processors use pipelining for performance (a CPI

of 1 and a fast clock cycle).
n Pipeline clock rate limited by slowest pipeline stage – so

designing a balanced pipeline is important.
n Must detect and resolve hazards

n Structural hazards – resolved by designing the pipeline
correctly.

n Data hazards
n Stall (impacts CPI).
n Forward (requires hardware support).

n Control hazards – put the branch decision hardware in as
early a stage of the pipeline as possible

n Stall (impacts CPI).
n Delay decision (requires compiler support).
n Static and dynamic prediction (requires hardware support).

