M COMPUTER ORGANIZATION AND DESIGN 5th

RaneA KAUSRANN The Hardware/Software Interface Edition

| Chapter 4

| The Processor
Data Hazards

| Pipeline Complexity

* Record of Intel Microprocessors in terms of pipeline
complexity, number of cores, and power. The
Pentium 4 pipeline stages do not include the commit
stages. If they were included, the Pentium 4 pipelines
would be even deeper.

Pipeline Out-of-Order/ | Cores/
Microprocessor Year | Clock Rate Stages Speculation Chip
5 No 1 5

Intel 486 1989 25 MHz 1 w
Intel Pentium 1993 66 MHz 5 2 No 1 10 w
Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29 w
Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75 w
Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103 w
Intel Core 2006 2930 MHz 14 4 Yes 2 75 \
Intel Core i5 Nehalem 2010 3300 MHz 14 4 Yes 1 87 w
Intel Core i5 Ivy Bridge 2012 3400 MHz 14 4 Yes 8 77 w

Cptr350 Chapter 4 — The Processor — Data Hazards

A8 Pipeline

» The first three stages fetch instructions into a 12-entry instruction
fetch buffer. The Address Generation Unit (AGU) uses a Branch
Target Buffer (BTB), Global History Buffer (GHB), and a Return Stack
(RS) to predict branches to try to keep the fetch queue full. Instruction
decode is five stages and instruction execution is six stages.

FO F1 F2 Do D1 D2 D3 D4 EO E1 E2 E3 E4 E5
Branch mispredict
penalty=13 cycles Instruction execute and load/store
]
Instruction =z I ALU/MUL pipe 0 BP
[ponof 2,
fetch 5 b update
e | g
'z'é?:’:w Instruction decode = |
o || || INStrUC || & pAupeet |
g |—mom-——
= . BP
@ LS pipeOor1 update
Core I7 Pipeline
128-Entry w| 32 KB Inst. cache (four-way iative) |4+
o) e * The Core i7 pipeline with
TR S| memory components.
hardare [¢ ¥ 2 The total pipeline depth
Complex Simvpla Sirrrpla vSimpls |S 14 StageS, W|th branCh
5 ¥ macro-of macro-oj macro-oj macro-oj . N . .
Maro - dec:ge," mids!’ dec:dsf decgdef’ mis-predictions costing
28-Entry micro-op loop stream detect buffer 17 CIOCk CyCleS ThIS
T Register aliash;ieand allocator deSIgn can bUffer 48
v
register file 128-Entry revorderbuﬂer loads and 32 stores. The
- T —— m—m— six independent units
2 e B | can begin execution ofa
et e e ; Y s ready RISC operation
N | [CAp| | Memervererturer | | SETS each clock cycle.
[128-bit 128-bit 128-bit
FMUL FMUL Store FMUL
| FDIV FDIV & load FDIV

v Vv v
32-KB dual-ported data 256 KB unified 12
cache (8-way associative) cache (eight-way)
v 4
8 MB all core shared and inclusive L3 ——» Uncore arbiter (handles scheduling and
cache (16-way associative) < clock/power state differences)

512-Entry unified [64-Entry data TLB
L2 TLB (4-way) »| (4-way associative)

>

Cptr350 Chapter 4 — The Processor — Data Hazards

| Review - Pipeline Registers
I

Need registers between stages to hold information
produced in previous cycle.

Review - Five Instruction Sequence

| Time (clock cycles)

v

Once the
[:

/ Inst O M Reg ? .[DM]_Reg pipeline is
Z full, one
t] Inst1 IM] Regf; DM | _1Reg instruction is
¥ [@ |]_ completed
0 l every cycle,

Inst 2 IM £ Reg - DM |{Reg so CPI =1
i
d =
e
r| Inst 3 M EL Reg[:@ .[DM]_Reg

M Regf DM Reg
] Inst4 g-[]-
Time to fill:the pipeline H

Cptr350 Chapter 4 — The Processor — Data Hazards

Review: Can Pipelining Get Us Into Trouble?

Yes: Pipeline Hazards

Structural hazards: different instructions in different
stages (or the same stage) conflicting for the same
resource.

Data hazards: an instruction cannot continue because
it needs a value that has not yet been generated by an
earlier instruction.

Control hazards: fetching the next instruction cannot
continue because it does not know the outcome of a
branch — special case of a data hazard — separate
category because they are treated in different ways.

Can usually resolve hazards by waiting.

| Pipelined Control - Simplified
I

IF/D

. l Instruction

Instruction M
(15-11) 1
-
RegDst

Cptr350 Chapter 4 — The Processor — Data Hazards

| Pipelined Control

l Control signals are derived from the instruction opcode
as in single-cycle implementation.

- L
Instruction
Control M wB
EX [0 M wB|
IF/ID ID/EX EX/MEM MEM/WB

| Pipelined Control

l posic

IF/D

Instruction
memory

] 1Inslrumlm

erd)
e
Write resul
register u
ite x
ata
nstruction
extend
nstruction
(20-16] G ALUOp

Instruction u
[15-11) X
(- L RegDst L (S

Cptr350 Chapter 4 — The Processor — Data Hazards

Structural Hazards

A structural hazard is a conflict for use of a resource.

A combination instruction/data memory would create a
structural hazard in a pipelined architecture

Load/store requires data access.
Instruction fetch would have to stall for that cycle.
Fix with separate instruction and data memories (I$ and

D$).

| A Single Memory Would Be a Structural Hazard

| Time (clock cycles)

»
>

; Readin déta from
1w 'Ilem J:Reg Memf. | Reg mgm(ry

Inst 1 'Ilem [Reg[:@ Mem]_ Reg
Inst 2 'Ilem [Regl: Mem]_ Reg

Ins‘t 3 h\m I Reg[@ Mem]— Reg
} Inst4 Re?ding i@structiion "'em L Reg Mem]— Reg

fom memory:

S~ 0 3 <

So0oQ~0

Cptr350 Chapter 4 — The Processor — Data Hazards

Optimizing Register File Access

Time (clock cycles)

n
>

E;Iiminaite register
;| add $1, (M {Regf ? DM ({Rkg file accéss hazard
n |]- By doifg reads in
s the second half of
f Inst 1 L R99[= ? -l-D" -l-Reg theicycleiand writes
' i in the first half.
o) ;

Inst 2 M L Regl:%j DM Reg
r :
d =1
e ; :
r| add $2,31, M IB D? .[DM]_RegE
v

Data Hazards

An instruction produces a value in a given pipeline
stage.

A subsequent instruction consumes that value in a
pipeline stage.

The consumer may have to be delayed so that the time
of consumption is later than the time of production.

Cptr350 Chapter 4 — The Processor — Data Hazards

Data Hazards

Data hazards occur when an instruction depends on data
computed by a previous instruction:

add $s0, $t0, $t1
sub $t2, $s0, $t3

200 400 600 800 1000 1200 1400 1600
T T T T T T T T

add $s0, $t0, $t1 L 1D a MEM we |

bubble) Cbubble) (bubble bubble,) (bubble
o) O /(0)
bubble bubble) Cbubble bubble) Cbubble
@ @) (O] @ 0

sub $t2, $50, $13 D -a MEM W |

Time

One Way to “Fix” a Data Hazard

>an fixi data

)

hazards b
add $1, M E0Regf pm E|R y
[? Reg[' |]_ egE waiting — stall -
s but impacts
1 stall ; CPI.
o)
r | stall
d
e v
r| sub $4,%51,8$5 wm L RESF Y .[DM]_Reg
and $6,%1,87 TR = .[DM]_Reg

Cptr350 Chapter 4 — The Processor — Data Hazards

A Better Way - Forwarding

Use result when it is computed
Don’t wait for it to be stored in a register.
Requires extra connections in the datapath.

Program

execution) 200 400 600 800 1000
order Time T T T T T

(in instructions)

add $s0, $t0, $t1

sub $t2, $s0, $t3

v

D () —

So0oQ~0

y

Forwarding Example

add $1, M J:Reg[: r bw]_Reg-

sub $4,51,$5 M J:Reg; .|.D .|_Reg

M EdReg[b)i jom E[R
and $6,%1,87 °9 |]_ >
>
or $8,$1,$9 IM = .[DM]_Reg

xor $4,31,$5 IM 'E ? .[DM]_Reg

Cptr350 Chapter 4 — The Processor — Data Hazards

Load-Use Data Hazard

Can’t always avoid stalls by forwarding
The value may not be available when needed.
Can’t forward backward in time.

Program
execution

00 400 600 800 1000 1200 1400
order Time T T T T T T

(in instructions)

Iw $s0, 20($t1) .

sub $t2, $s0, $t3

Example of Load-use Data Hazard

| Dependencies backward in time cause hazards.

1w $1,4($2)

=
A
D
(n CCOLLLrr)

.[DM
sub $4,%$1,%5 M J:Rag[:_l__g D Reg

and $6,$1,87 M 0

S~ 0 3 —

o0

or §8,%1,$%9

v

] xor $4,51,85

Reg

Cptr350 Chapter 4 — The Processor — Data Hazards

10

Code Scheduling to Avoid Stalls

Reorder code to avoid the use of the load result in the
next instruction.

CcodeforA =B + E; C = B + F;

Tw $tl, 0($t0) Tw $tl, 0($t0)
Tw ($t2)-4(5t0)

S| 2dd $t3, st (5t2)

- sw $t3, 12($t0)
Tw ($t4)-8($t0)

—»add $t5, $t1,

sw $t5, 16($t0) sw $t5, 16($t0)

Data Hazards in ALU Instructions

Consider this sequence:
sub , $1,3%3
and $12,%2,%5
or $13,%6,
add $14,952,
sw $15,100(%2)

Can we resolve hazards with forwarding?
How do we detect when to forward?

Cptr350 Chapter 4 — The Processor — Data Hazards

11

| Dependencies & Forwarding

Time (in clock cycles)

Value of CC1 cC2 cC3 CcC4 CCs CcCé6 cc7 cC8 cCo
register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Program
execution
order
(in instructions)
sub $2, $1, $3 @—H{R%}D_
and $12, 52, $5 ‘ﬁeg
or $13, $6, $2 @-}%
add $14, $2,$2
sw $15, 100($2)

Data Forwarding

Take the result from the earliest point that it exists in any

of the pipeline state registers and forward it to the

functional units that need it in that particular cycle.

For the ALU functional unit: the inputs can come from

any pipeline register rather than just from ID/EX by
Adding multiplexers to the inputs of the ALU.

Connecting the Rd write-data in EX/MEM or MEM/WB to
either (or both) of the EX’s stage Rs and Rt mux inputs.

Adding the proper control hardware to control new muxes.

Other functional units may need similar forwarding logic
(e.g., the DM).

With forwarding, you can achieve a CPI of 1 even in the
presence of data dependencies.

Cptr350 Chapter 4 — The Processor — Data Hazards

12

Detecting the Need to Forward

Pass register numbers along pipeline

in ID/EX pipeline register

by
ID/EX.RegisterRs, ID/EX.RegisterRt
Data hazards when
EX/MEM.RegisterRd = ID/EX.RegisterRs
EX/MEM.RegisterRd = ID/EX.RegisterRt
MEM/WB.RegisterRd = ID/EX.RegisterRs
MEM/WB.RegisterRd = ID/EX.RegisterRt

}
}

e.g., ID/EX.RegisterRs = register number for Rs sitting

ALU operand register numbers in EX stage are given

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Detecting the Need to Forward

EX/MEM.RegWrite, MEM/WB.RegWrite

EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0

And only if Rd for that instruction is not $zero

But only if forwarding instruction will write to a register

Cptr350 Chapter 4 — The Processor — Data Hazards

13

Forwarding Paths

ID/EX EX/MEM MEM/WB
i ~ - R
— M
—lu
—] L
— ' X
i \JForwardA
Registers) ALUP Lol
1 > a
M
AN Data
X memory
>
\/
. .

t J"
ForwardB|

EX/MEM.RegisterRd

\Forwardmg J MEM/WB.RegisterRd

unit

(x==2)

Forwarding Conditions

EX hazard
if (EXIMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

if (EXIMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

MEM hazard
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

Cptr350 Chapter 4 — The Processor — Data Hazards

14

Double Data Hazard

Consider the sequence:

add ,$1,%2
add , 51,983
add $1,91,%4

Both hazard situations occur
Want to use the most recent.
Revise MEM hazard condition
Only fwd if EX hazard condition isn’t true.

Revised Forwarding Conditions

MEM hazard
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Cptr350 Chapter 4 — The Processor — Data Hazards

15

| Datapath with Forwarding

ID/EX
m ”‘WB—‘ EX/MEM
Control M WB MEM/WB
IF/ID EX |_> M w8
plliing = ~ [-
M
— u
| X
< —
S N
2 .
S Registers | E— ALU | los] >
% — ~
Instruction £ |
— = M
memory . L, |u Data
x memory
=
1
IF/ID.RegisterRs Rs L
IF/ID.RegisterRt [Rt ~)
1F/ID-RegisterRt Rt M EX/MEM RegisterRd
IF/ID.RegisterRd u]
L] L x L L
A% Forwarding 2| | MEM/WB.RegisterRd
unit

xc=

| Load-Use Data Hazard

l Time (in clock cycles)
CcC1 CcCc2 CcC3

Program
execution
order

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

(in instructions) -

‘Reg

[%H

CC4 CCs CcCe cc7

ccs CcCo

Need to stall
for one cycle

Cptr350 Chapter 4 — The Processor — Data Hazards

16

Load-Use Hazard Detection

Check when instruction is decoded in ID stage.

ALU operand register numbers in ID stage are given by
IF/ID.RegisterRs, IF/ID.RegisterRt

Load-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

If detected, stall and insert bubble.

How to Stall the Pipeline

Force control values in ID/EX register to 0
EX, MEM and WB do nop (no-operation).
Prevent update of PC and IF/ID register
Simply forces the same instruction to be decoded again.
Following instruction is fetched again.
1-cycle stall allows MEM to read data for Tw
Can subsequently forward to EX stage if needed.

Cptr350 Chapter 4 — The Processor — Data Hazards

17

| Stall/Bubble in the Pipeline

l Time (in clock cycles)
CC1 cC2 CC3 CC4 CC5 cCeé6 cC7 cC8 CcC9 CC 10

Program
execution
order

(in instructions) - -

w2, 208 @_HJ@:”:D -
. = 1 bubble / Stall inserted
@_H,ﬂ @ here
and becomes nop

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

Datapath with Hazard Detection

Hazard ID/EX.MemRead

unit
ID/EX

m I i EX/MEM
trol u " We MEMWE
ARG N L] L5
o EX M WB|

Registers

|F/DWrite

PCWrite

[Instruction

PC Instruction | _|
memory

Data
memory

xc2)~(xec2)
I
¥
¥
@;)

IF/ID.RegisterRs L
IF/ID.RegisterRt
IF/ID.RegisterRt Rt

IF/ID_RegisterRd T vy
— ID/EX.RegisterRt —]) L L]
Rs Forwarding
Bt unit

xc =)

Cptr350 Chapter 4 — The Processor — Data Hazards

Summary

All modern day processors use pipelining for performance (a CPI

of 1 and a fast clock cycle).

Pipeline clock rate limited by slowest pipeline stage — so
designing a balanced pipeline is important.

Must detect and resolve hazards

Structural hazards — resolved by designing the pipeline
correctly.

Data hazards
Stall (impacts CPI).
Forward (requires hardware support).

Control hazards — put the branch decision hardware in as
early a stage of the pipeline as possible

Stall (impacts CPI).

Delay decision (requires compiler support).

Static and dynamic prediction (requires hardware support).

Cptr350 Chapter 4 — The Processor — Data Hazards

19

